系外銀河における中性炭素原子輝線観測

筑波大学 D1 保田 敦司 (YASUDA Atsushi)

水素分子(H₂)ガス量の測定

- 水素分子(H₂)
 >宇宙に最も豊富に存在する分子
 >銀河進化や星形成の理解に重要
 >電気双極子モーメントを持たないため、分子雲(~数+ K)中の H₂分子の直接観測は困難。
- •一酸化炭素(CO)

>分子雲中でH₂分子に次ぐ存在量 ([CO]/[H₂] ~ 10⁻⁴)
 >¹²CO(J=1-0): 極低温の分子雲でも容易に励起 (E/k = 5.5 K)
 >CO-H₂質量変換係数 X_{CO} (¹²CO(J=1-0))

$$N(H_2)[cm^{-2}] = X_{CO}I_{CO} \quad (I_{CO} = \int T d\nu)$$

H₂ガストレーサーとしてのCOの課題

low metallicity

COで観測されるH₂ガスが実際よりも小さくなる

- high-z galaxy
 - ¹²CO(J=1-0)静止周波数: ν_{rest} = 115.271 GHz
 - ・ High-J CO & high-J CO/CO(1-0) line ratioからCO(1-0)を推定
 - → Line ratio: 銀河のタイプ・銀河内部でばらつき High-J CO: warm & dense gasをトレース

中性炭素原子CI

サブミリ波&テラヘルツ帯で観測
 >[CI](³P₁-³P₀) ([CI](1-0)) v_{rest} = 492.161 GHz
 >[CI](³P₂-³P₁) ([CI](2-1)) v_{rest} = 809.344 GHz
 (CO(4-3): 461.041 GHz, CO(7-6): 806.651 GHz)

H₂トレーサーとしての[CI]輝線

- ・臨界密度
 ▶CO(1-0): ~10³ cm⁻³
 ▶[CI](1-0): ~500 cm⁻³ [CI](2-1): ~10³ cm⁻³ (Papadopoulos+04)
- ν_{rest}([CI]) > ν_{rest}(CO(1-0))
 ➤CO(1-0)よりもhigh-zでの観測が可能
- Low metallicity領域や強い(FUV, cosmic ray)輻射場でCO光 解離 (CO → C + O)の促進。
 Cの存在量が増加。COに代わるH₂トレーサーとして期待

Simulation (Papadopoulos+18)

Simulation (Papadopoulos+18)

[CI]輝線観測(銀河系内)

- Orion A and B clouds (Ikeda+02, 富士山頂サブミリ波 望遠鏡)
 - Integrated intensity of [CI](1-0)/¹³CO(1-0): almost constant value (0.5 ~ 0.8)
 - Abundance ratio *N*(CI)/*N*(CO): almost constant at the interior
- Orion A giant molecular cloud (Shimajiri+13, ASTE)
 - Optically depth $\tau_{CI} = 0.1 \sim 0.75 \rightarrow$ optically thin
 - [CI](1-0)分布が¹³CO(1-0)分布と相関が良い

→ CIは分子雲内部までCOと共存、dense領域をトレース

[CI]輝線観測(近傍銀河)

Jiao+19

- Herschelによる近傍銀河の[CI](1-0)、
 [CI](2-1)輝線観測(~ kpc scale)。
- 15 nearby spiral galaxy + Seyfert and starburst galaxy + LINER
- [CI](1-0) ([CI](2-1)) and CO(1-0) luminosities
- \rightarrow tight and nearly relation

kpc scaleでは[CI](1-0, 2-1)とCO(1-0)は 線形相関

[CI]輝線観測における課題

近傍銀河での[CI]輝線観測

- COとの相関(様々な領域(構造)、 環境、分子雲の性質に対する変化)
- H₂ガストレーサーとしての有用性 (CO?, [CI]?, Dust?)

- High-z galaxy
- Low metallicity region

における[CI]のH₂ガス

- トレーサーとしての有用性
- これまでの近傍銀河における[CI]輝線観測
 >銀河中心の観測 (Israel+05, Krips+16, Miyamoto+18, Salak+19)
 >Herschelによる1点 or kpc scale観測 (Jiao+17, 19, Israel+15)

銀河の構造が分解可能なスケール(sub-kpc)以下での広 域[CI]輝線観測が不足

近傍棒渦巻銀河 M83

Morphology ¹	SAB
Ra. (J2000) ¹	13 ^h 37 ^m 00 ^s .48
Dec. (J2000) ¹	-29°51′56″.48
Distance [Mpc] ¹	4.5
PA [deg] ¹	45
Inclination [deg] ¹	24
1: Kuno et al. (2007)	

豊富なCO multi-line data

- 干渉計(ALMA):
 - ➢ ¹²CO(1-0, 2-1, 3-2) (PI: Hirota)
 - ➢ ¹³CO(1-0) (PI: Sakamoto)

単一鏡:
 ▶ ¹²CO(1-0) (NRO45m, Kuno+07)
 ▶ ¹²CO(3-2) (ASTE, Muraoka+09)

近傍棒渦巻銀河 M83

			$-29^{\circ}49$	'00" =						· · · ·
Telescope	ASTE (PI: Miyamoto)	_	50)'00'' -						
Observation line	[CI](³ P ₁ - ³ P ₀) (492.160651 GHz)	(000)	51	L'00″ -						
HPBW	17''×17''(= 387 x 387 pc)	ec (J2	52	2'00" -		1				
Main beam efficiency	0.45 at 490 GHz	Ď	53	3'00" -						-
Observation seasons	2017/07~08, 2019/07	_	E.							
Data Reduction	COMING-ART (Sorai+19)	_	04	± 00 -						
		_		13 ^h 3	$7^{\rm m}12^{\rm s}$	06 ^s	s 00) ^s	$36^{\mathrm{m}}54^{\mathrm{s}}$	48^{s}
							$D \Lambda / I$	2000)		

RA (J2000)

V-band image (gray) & observation region with ASTE (yellow rectangle)

- ・ 領域毎での[CI](1-0)/CO line ratioの変化
- Line ratioを変化させる要因(環境・分子雲の性質など)の解明

近傍棒渦巻銀河 M83

- CO archival data
 >¹²CO(1-0): NRO45m (CO Atlas), Kuno+07
 >¹²CO(3-2): ASTE, Muraoka+09
- 領域区分

V-band image (gray) & H_{α} intensity (red contour)

- ピクセルごとで[CI](1-0)/CO line ratio(積分強度・ピーク温度、3σ 以上)を測定
- 銀河中心(center)と円盤(disk) 領域での[CI](1-0)/CO line ratio の変化を議論
- 青点:center 青点以外:disk

結果 - [CI](1-0) – COピーク温度

Black contour: H_{α} intensity

2019/12/21

結果 - [CI](1-0) – COピーク温度

2019/12/21

議論 - [CI](1-0) – COピーク温度分布

[CI]/CO強度比とガスの物理状態

- RADEX for non-LTE analysis (van der Tak+07)
 - ▶[CI]/CO強度比を増減させるガス密度・温度・CI/CO存在比の 条件を推定
 - ▶CI/CO存在比 = CI柱密度 N_{CI} / CO柱密度 N_{CO}

→ 観測結果から制限

・ CI柱密度 N_{CI}: CI励起温度T_{ex}に依存

• CI励起温度
$$T_{\text{ex}} = \frac{38.8}{\ln\left(\frac{2.11}{R}\right)}$$
 with $R \equiv \frac{\int T_{\text{mb}}([\text{CI}](2-1))dv}{\int T_{\text{mb}}([\text{CI}](1-0))dv}$

→ T_{ex}測定には[CI](2-1)輝線観測(= 809 GHz) も必要

まとめ

- 中性炭素原子輝線[CI](³P₁-³P₀): v_{rest} = 492.161 GHz), [CI](³P₂-³P₁): v_{rest} = 809.344 GHzはCO光解離が活発な領域(low metallicity, high FUV・cosmic ray rate)で、COに代わるH₂トレーサーとして期待。
- ・これまでの近傍銀河[CI]輝線観測:銀河中心、Herschelによる> kpc scale観測
 →銀河構造が分解可能なスケール(sub-kpc)以下での広域[CI]輝線観測が不足
- ASTEによる近傍棒渦巻銀河M83の[CI](1-0)輝線観測(~0.4kpc)
 - [CI](1-0)がトレースするガスは、CO(3-2)がトレースするガスに近い
 - ・ ピーク温度比分布 [Cl](1-0) vs. CO(1-0):(1) arm領域 (2) bar ~ center領域 で勾配

[Cl](1-0) vs. CO(3-2) : H_α peak付近で減少傾向

• [CI]/CO強度比とガスの性質との相関をより正確に議論するなら、[CI](2-1)輝線も必要