2019年12月21日 テラヘルツ波が拓く新しい宇宙像@国立極地研究所

SPICAとTHZ観測の協同で挑む銀河天文学の考察

泉 拓磨 (NAOJ) & SPICAサイエンス検討会

次世代赤外線天文衛星 SPICA

SPICA (Space Infrared Telescope for Cosmology and Astrophysics)

– 宇宙が重元素と星間塵により多様で豊かな世界になり、 生命居住可能な惑星世界をもたらした過程を解明する –

- JAXA + ESA
- λ = 12 230 μm
- 2027-2028年の打ち

上げを目指す。

次世代赤外線天文衛星 SPICA

観測装置のまとめ

▶ SPICAの観測装置

遠赤外線観測装置 SpicA FAR-infrared Instrument (SAFARI)	中間赤外線観測装置 SPICA Mid-Infrared Instrument (SMI)	遠外線偏光観測装置 Magnetic field explorer with BOlometric Polarimeter (B-BOP)
<u>SRON(オランダ)</u> を中心とした 欧州チーム	<u>名古屋大学</u> ・ <u>宇宙科学研究所</u> を 中心とした国際チーム	<u>CEA(フランス)</u> を中心とした 欧州チーム
<u>SAFARI ホームページ</u>	<u>SMI ホームページ</u> SPICA/SMI spica mid-infrared instrument	
	SMI ファクトシート PDF file (v12, 2019/5/16) SPF Strate	B-BOP(I目POL) ファクトシート <u>PDF file</u>
代表的な文献 <u>[~]Safari: instrument design of the far-</u> <u>infrared imaging spectrometer for</u> <u>spica</u> W. Jellema et al., ICSO, 105631K (2017)	代表的な文献 <u>[~]SPICA mid-infrared instrument</u> (SMI): conceptual design and feasibility <u>studies</u> Kaneda et al. SPIE, 106980C (2018)	代表的な文献 [‴] Probing the cold magnetized Universe withSPICA-POL (B-BOP) [″] Ph. André et al. PASA (2019) To be published.

SPICA サイエンス検討班

次世代赤外線天文衛星 SPICA

4

SPICA / SMI Fact Sheet

SPICA Mid-infrared Instrument (SMI) covers the wavelength range of $12-36 \,\mu m$ with four channels: spectroscopy (SMI/LR, /MR, /HR) and imaging (/CAM).

SMI/LR

/CAM

Slit viewer

for SMI /LR

/MR

27 34 27 Band centre - µm 15 17 - 3634 18 - 3612 – 18 ^(a) Wavelength - µm Spectral resolution R 50 – 150^(b) 1300 - 2300^(b) 33000 ^(c) 5 (1100-1400) (diffuse source) (20 - 110)600" x 3.7" 60" x 3.7" 4" x 1.7" 600" x 720" Field of view 4 slits 1 slit 1 slit 27" 2" 2.7" 3.5" Band centre FWHM 0.7" x 0.7" 0.7" 0.7" x 0.7" 0.7" **Pixel scale** Si:Sb Si:Sb Si:Sb Detector 1K x 1K Si:As Point source sensitivity $(5 \sigma/1 hr)^{(d)}$ 25 (e) 13 1400 (e) Continuum - µJy 280 (e) Line - 10-20 W/m² (f) 2.8 1.0 5 Survey speed - arcmin²/hr ^(g) ~28 ~4500 ~1.8 Diffuse source sensitivity $(5\sigma/1 \text{ hr})^{(d)(h)}$ Continuum - MJy/sr 0.04 0.05 Line - 10⁻¹⁰ W/m²/sr 0.6 1.5 ~20 ~1000 ~20000 Saturation limit – Jy ~1

(a) continuous coverage up to $18.1 \,\mu\text{m}$ + partial coverage for H₂O $18.66 \,\mu\text{m}$.

(b) $\lambda/\delta\lambda = 150$ (SMI/LR) and 1300 (/MR) at $\lambda = 36 \mu m$.

(c) designed for $\lambda 20 \,\mu m$ diffraction limited PSF.

(d) sensitivity estimated with Fowler-16 sampling for SMI/LR and /CAM (0.5 Hz), and with ramp curve sampling for /MR (0.5 Hz) and /HR (1 Hz sampling).

(e) continuum sensitivity rescaled with R = 50, R = 1300, and R = 25000 for SMI/LR, /MR and /HR, respectively.

Parameter

(f) sensitivity for an unresolved line.

SMI Factsheet v12 - 16 May 2019

(g) survey speed for the 5 σ detection of a point source with the continuum flux of 100 µJy for SMI/LR at λ = 30 µm (/CAM at 34 µm) and the line flux of 3x10⁻¹⁹ W/m² for /MR at λ = 28 µm, both in the low background case with overheads of readout time included (32 sec/frame for SMI/LR and /CAM due to Fowler-16 sampling). (h) sensitivity for a diffuse source in a 4" x 4" (SMI/LR , /MR) or 2" x 2" area (/HR). (i) background levels are assumed to be 80 MJy/sr (High) and 15 MJy/sr (Low) at 25 μ m.

SPICA/SAFARI Fact Sheet

SAFARI Overview

- Four band grating spectrometer
- Continuous spectroscopic capability from 34-230 µm

SPICA Mission

- ESA/JAXA collaboration
- Telescope effective area 4.6 m²
- Primary mirror temperature 8K
- Goal mission lifetime 5 years

SAFARI GS Factsheet V1.0 - 30th September 2016

- $R \approx 300$ for LR case
- See for more details: Explanatory Note to SAFARI Fact Sheet on https://spica-mission.org/instruments.html#safari

Sky Visibility Contours (days per year) based on the Observation Angle Constraint Roll +10 deg. -10 deg new shadow cone with θ_{SC} = 13 deg

SPICAの現状 (1/2)

- SPICA実現のためには、ESAの宇宙科学プログラムであるCosmic Visionの中型ミッション5号機(M5)として採択されることが必須。
- M5に応募のあった25計画に対する一次審査の結果、SPICAを含む3つの 計画が2018年5月に採択。
- M5の最終候補3計画から、2021年の夏頃に1計画が採択予定。

SPICAの現状 (2/2)

- そのM5に勝ち抜くための様々な活動が、日欧の双方で強く要求されている段階にある。
- ESA側ではSPICA Science Study Team (SST)が設置され、その下に
 Science Working Groupが発足。2020年に"Yellow Book"を編纂予定(各界への宣伝)。
- 日本では、宇宙研所長の諮問機関として、SPICA研究推進委員会が2018 年8月に発足。その下に、「SPICAサイエンス検討会」を設置。国内研究 者にSPICAへの理解を深めてもらい、多くの重要サイエンスを洗い出して まとめることで、Yellow Book作成に貢献する。

SPICAサイエンス検討会

- 太陽系・系外惑星

Ŧ	<u> 归員体制</u> (ve	er.191104) とり	まとめ: <mark>長尾透</mark> (愛娘	爰大),野村英子(NA	OJ) (敬称略)
	銀河BH進化 泉拓磨(NAOJ)	近傍銀河・銀河系 <mark>江草芙実</mark> (東大)	星形成・星間媒質 井上剛志(名大)	惑星形成 本田充彦(岡山理大)	太陽系・系外惑星 平野照幸(東工大)
	市川幸平(東北大) 今西昌俊(NAOJ) 梅畑豪紀(理研) 久保真理子(NAOJ) 竹内努(名大) 田村陽一(名大) 局羽儀樹(京大) 長峯健太郎(阪大) 長峯健太郎(阪大) 橋本拓也(早稲田大) 播金優一(NAOJ) 西田武彦(ISAS)	 稲見華恵(広島大) 金子紘之(NAOJ) 左近樹(東大) 竹内努(名大) 田村陽一(名大) 中西康一郎(NAOJ) 馬場淳一(NAOJ) 本原顕太郎(東大) 渡邉祥正(日大) 	相川祐理(東大) 岩崎一成(NAOJ) 大屋瑤子(東大) 神鳥亮(ABC) 坂井南美(理研) 島尻芳人(鹿児島大) ち西隆(東北大) 古原研悟(名大) 野沢貴也(NAOJ) 日高宏(北大) 古屋玲(徳島大) 守屋尭(NAOJ) 山本智(東大)	 相川祐理(東大) 荒川創太(東工大) 石原大助(ISAS) 田崎亮(東北大) 橘省吾(東大) 橘省吾(東大) 芽原弘毅(大産大) 中川貴雄(ISAS) 野津翔太(Leiden) 野村英子(NAOJ) 藤井悠里(名大) 藤原英明(NAOJ) 松本侑士(ASIAA) 武藤恭之(工学院大) 百瀬宗武(茨城大) 森昇志(東大) 	臼井寛裕(ISAS) 大野和正(東工大) 奥住聡(東工大) 奥谷彩香(東工大) ツ水香(東工大) 田内紀代恵(東大) 川内紀代恵(東大) 川島由依(SRON) 癸生川陽子(横国大) 小林仁美(LLP) 小林浩(名大) 佐川英夫(京産大) 関根康人(東工大) 空華智子(NAOJ) 高橋葵(ABC)
	・現時点で28機 - 赤字で示し ・各班のメーリ	藤开友沓(東工大) 前澤裕之(大阪府大) <mark>松尾太郎</mark> (大阪大) 水木敏幸(ISAS) 薮田ひかる(広島大)			

spica_planets@eps.sci.titech.ac.jp

SPICA vs 南極THz望遠鏡 (30m)

波長[μm]

検討その① High-z galaxyのPAHサーベイ

How do galaxies co-evolve with cosmic structures?

How do environments affect the galaxy evolution?

銀河とブラックホールの宇宙論的共進化

- 爆発的星形成活動もSMBH降着も同様の赤方偏移進化を示す。
- ただし、z > 4のIR luminosity function (SF) には大きな不定性がある。
- ・ 暗い天体も含めた、dusty star-forming (+ AGN) activityの全貌を理解したい。
 → 銀河が先か?BHが先か?

SPICA SMI Deep Survey?

(Xモ) SPICAによる熱源診断

- 多様なIR微細構造線を
 用いた熱源診断も可能。
- ただし、AGNの場合だ とNarrow Line Region が形成されている必要 あり = 「埋もれた AGN」とは言い難い天 体のみに適用可能。

SPICA SMI Deep PAH Survey?

PAHで検出される銀河数の期待値(括弧内はAGN有の銀河)

Redshift							
$\log(L_{ m IR}/{ m L}_{\odot})$	0.5 - 1	1 - 1.5	1.5 - 2.0	2.0 - 2.5	2.5 - 3.0	3.0 - 4.0	> 4.0
13.00 -	0 (0)	2(1)	9 (4)	25(10)	46 (19)	23 (10)	52 (18)
12.50 - 13.00	7 (3)	65 (23)	159 (58)	250 (93)	308 (122)	165 (70)	73 (25)
12.25 - 12.50	32(11)	182 (63)	301 (107)	351 (131)	356 (144)	150 (42)	46 (0)
12.00 - 12.25	114 (39)	445 (153)	552 (196)	540 (204)	457 (167)	106 (10)	1 (0)
11.75 - 12.00	297 (101)	819 (281)	813 (290)	614 (182)	338 (10)	24(0)	0(0)
11.50 - 11.75	606 (205)	1225 (420)	933 (269)	422 (6)	49 (0)	0(0)	0 (0)
11.00 - 11.50	2592(874)	2754 (567)	826 (27)	48(0)	0 (0)	0 (0)	0 (0)
10.50 - 11.00	3574 (804)	466 (0)	0 (0)	0(0)	0 (0)-		0(0)
-10.50	1031 (20)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)
Total	8254 (2057)	5957 (1507)	3593 (951)	2249 (627)	1554(462)	467 (133)	172 (44)

w/ SAFARI 18

 各PAH featureについ て、SMIの波長域を外 れても、SAFARIで十分 にカバーできている。 z > 4 でも十分な数の 星形成銀河が検出され る (各光度binで>100 個くらい…?)。 → Dust-obscured activity at z > 4

MIRで見えてくる世界…?

- ダストに埋もれて、かつ、活動的な現象が効率よく発見される。
- 若いphaseのAGN、爆発的星形成活動の現場、…

THz - submmの重要性

- Cold dust SEDのpeakやRJ tail 側を、まんべんないredshift範 囲で抑えることはダスト質量・ 温度の制限、ISM進化の理解に おいて重要。
 - SFR(D)の赤方偏移進化
 を、ガス量の観点から理
 解したい。
 → ダスト連続波、CO・
 [CI] 輝線等を用いた広域
 サーベイ??

THz - submmの重要性

南極望遠鏡(KIDカメラ)?

連続波電波カメラ(NKID)(案)							<	23	
NEP = 6×10^{-18} W Hz ^{-1/2} \rightarrow T _{RX} = 1.5 K for B=40GHz									
	周波	感 度 (5σrms) (τ=積分時間)			角分	素子数	Mapping speed		
	数帯	τ=60 1 hc	1 hour	hour 10 hours		解能	N	[deg ² hr ⁻¹ r	nJy ^{-2]}
	GHz	sec			sion				
ポ ー ト 1	230	0.67	0.087	0.027	0.19	11"	4000 × 2	128 × 2	レンズ
		mJy	mJy	mJy	mJy				UUN
	400	1.12	0.15	0.046	0.22	6.2″	6300 × 2	22 × 2	レンズ
	650	1.68	0.22	0.069	0.052	3.8″	16600 × 3	9.8 × 3	レンズ
ポート2	850	2.45	0.32	0.10	0.011	2.9″	27000 × 2	4.4×2	レンズ
	1300	13.6	1.76	0.48	0.00035	1.9"	10800 × 2	0.024 × 2	ホーン
	1500	46.4	6.00	1.89	0.00009	1.7"	14400 × 3	0.0022×3	3 ホーン
Mapping speed (MS) = $\frac{N\Omega}{NEFD^2}$ Total 7.2万素子+11.9万素子									

- 基本的に高周波はconfusion limitの影響なし。10h積分で、sub-mJy source@submmのdust放射peak (数百µm) は十分おさえられるだろう。
- (サブミリ波帯がconfusion limitに達しがちなのは気になるところ)
- [CI]輝線の話はこの後の保田さんtalk参照。

SPICAで調べるAGN outflow(中心核編)

- 馬場くん@天文台's slide
 - vibration: v=1-0
 - rotation: $\Delta J=\pm 1$
 - simultaneous observation of multiple J
 - basically observed in absorption
 - can effectively probe the vicinity of AGNs

Wavelength (µm)

host galaxy

SPICAで調べるAGN outflow(中心核編)

- CO振動回転遷移線の高速度分解能観測は、すでに近傍ULIRGに対してSubaruで実例あり
 (Shirahata et al. 2013)。
- 多遷移輝線解析から、温度・体積密度・柱密度の制限が可能。

25

SPICAで調べるAGN outflow (中心核編)

26

SPICAで調べるAGN outflow (銀河スケール編) 27

- 基本的にはOH absorptionを使って、blueshift成分をfitし、outflowに言及。
- OH 119 µmがメイン。その他、65, 79, 84, 119 µm(more is better!)
- SPICA/SAFARIの波長範囲 (~230um)の制限 → z ~ 1くらいまで観測可能。

THz観測:Higher-zへ!

THz観測:Higher-zへ!

- ダストに埋もれた宇宙の活動性を理解するため、従来の同波長帯装置を 凌駕する圧倒的感度をもつSPICA計画が進行中。
- 多くの若手を中心に、サイエンス検討会も発足(天文学会企画セッション)。研究者向けdocumentの編纂に向けて活動中。
- SPICA自身が作るdeep fieldで、大量のdusty galaxyが発見される。ただし、それらのcold componentはやはりTHz submmで抑えるべき。
 → ISM量の定量評価。ISM進化と紐づけたSFRD進化の理解。
- AGN-drivenのアウトフローもSPICAで中心核から母銀河に至るまで観測 可能。…ただし!赤方偏移の範囲が狭めな気がする。
- THz submm観測では、OH吸収線の高感度観測を広い赤方偏移範囲で実施。最も活動性が高くなるz = 1 3でのcold outflowの定量評価を確立。